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SUMMARY 

A simple computational scheme is developed to compute laminar flows inside axisymmetric ducts. It is based 
on the Keller box method where the equations are approximated at the centre of the downstream face of 
each computational box. The coupling between the pressure gradient and the velocities for internal flow has 
been observed to introduce stability problems for the Keller box method that are not present for external, 
boundary layer flow problems. The difference scheme for the velocities is coupled to an iterative scheme to 
solve for the pressure gradient at each axial step. Example results for developing flow in a pipe and in a 2" 
conical diffuser are presented. 
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1 ,  INTRODUCTION 

Internal axisymmetric flows are regularly found in engineering applications, where typical 
examples are contraction sections, pipes and diffusers. It is desirable to be able to predict the flow 
properties such as the pressure drop and skin friction because of the widespread application of 
these devices. The equations of motion have yielded analytic solutions to only a few very special, 
simplified internal flows, where the classic example is the fully developed laminar flow in a pipe. 
However, most flows of interest are not amenable to analysis and one must resort to numerical 
approximation. 

The demands on any numerical approximation scheme are very stringent: it must be accurate, 
it must be stable and it must perform under the constraints of the available computational 
resources of time and memory. Accurate solutions to both the cross-stream velocity distribution 
and the streamwise evolution of the velocities and the pressure gradients are required for non-self- 
similar flows. 

Only incompressible laminar flows will be considered in this paper. Additionally, it will be 
assumed that the radius of the duct varies slowly in the streamwise direction. Liquids can be 
treated as incompressible in almost all cases and for low Mach numbers gases are also nearly 
incompressible, so the assumption of incompressible flows is not very restrictive. However, the 
assumption that the radius is varying slowly is more restrictive. It has been made to allow the use 
of the thin shear layer approximations to the equations of flow. For diverging ducts this 
assumption avoids the problem of separation with the attendant flow reversal. The FLARE 
approximation' can be used to deal with separation, and this will be employed in future 
developments of this method. Laminar flow has been assumed because the performance of any of 
the turbulence closure models is suspect except for the specific flows that they have been 
calibrated for. 
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A scheme was developed that was based on the Keller box finite difference method. It is 
different in that all of the equations are centred on the downstream face of the box. An iterative 
method is used to compute the pressure gradient for each axial step. Computational results from 
the scheme developed in this paper will be presented for two flows: developing flow in a circular 
pipe and flow in a 2" conical diffuser. 

2. COMPUTATIONAL MODEL 

The basic equations, in cylindrical co-ordinates, that govern the flow under these assumptions are 
the continuity equation 

-+-- )?f '(<)dU + - . - = o  f(5) 8qV au 
a t  f(0 aq q arl 

and the momentum equation for the axial velocity component 

Note that the (x, r )  co-ordinate system has been transformed using the following relations: 

5 = x, rl = rf(x). (3) 
This transformation allows a rectangular grid to be used in the computational domain if the 
functionf(x) normalizes the radius to range from zero to one at all axial locations. 

where the second-order 
system of partial differential equations is recast as a system of first-order partial differential 
equations. The Keller box method was originally developed for the thin shear layer equations of 
heat, momentum and scalar transport. Briefly, the second-order partial differential equations are 
converted to a system of first-order equations. This is done by setting 

The computational method is based on the Keller box 

w = drJ/d)? (4) 

Figure 1. The computational grid used for the Keller box method. The variables q and 5 are the transformed cross-stream 
and streamwise co-ordinates respectively 
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for the momentum equation. These equations are then differenced within a single grid mesh, with 
no differencing across grid boundaries. This allows non-uniform grid spacings to be used in a very 
natural way. Central differences are employed throughout the scheme. The computational grid 
that is used for both the Keller box and the upstream Keller box methods is shown in Figure 1. 
Equations with streamwise derivatives are centred on a point at the geometric centre of the mesh 
(circle in Figure 1) and equations that do not have streamwise derivatives are centred at the 
midpoint of the unknown’s boundary (cross in Figure 1). This system of equations is then 
linearized using Newton’s method and solved iteratively. The method has been thoroughly 
studied with regard to its stability and the error is known to be second-order in A( and Av.’ 

The Keller box differencing scheme was attempted, but because of streamwise averaging an 
annoying oscillation was retained in the axial pressure gradient for developing pipe flow. This 
oscillation was less that I %  of the mean pressure gradient, but it caused an alternating sign radial 
velocity distribution that was retained in the fully developed flow region. 

Whenf(x) = 1, equations (l), (2) and (4) yield the following non-linear system of equations if 
the standard Keller box differencing scheme is used: 

The values at the previous step are indicated by the superscript ‘p’, and the subscripts j and j - 1 
indicate the cross-stream location as shown in Figure 1. The second term of the left-hand side of 
equation ( 2 )  could also be approximated by 

vjwj+ vj-l wj-l+ Vj”Wf+ vp l  wpl 
4 

Keller has noted that either approximation will produce similar results. Notice that the terms 
involving cross-stream derivatives of the original differential equations are averaged over the 
known and unknown faces of the difference box, hence the system of equations will yield results 
that are correct in the average. At  first glance this would appear to smooth the resultant solution. 
However, this is not true: if the known or initial values were in error, the resultant solution at the 
next step would have an error of opposite sign sufficient to compensate for the initial error. When 
this system of equations has been used to compute entrance flow in a pipe i t  has been observed to 
produce oscillations in the computed radial velocity distributions where the flow should be fully 
developed-a radial velocity distribution at  one station followed by a radial velocity distribution 
of opposite sign at the next station. This continued for as long as the computations were carried 
out; the radial velocity distribution would not decay to zero as it should. 

The previous discussion about the Keller box method has been restricted to one box. The flow 
quantities at each node are tied together by having a connection with two adjacent boxes. This 
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complicates the analysis of the system of equations that is generated in this algorithm. However, 
the averaging of flow quantities at  two streamwise locations still smooths out errors and 
oscillations before balancing the thin shear layer equations. The average value of the solution 
may be correct, but the solutions at  the upstream and downstream faces of the step could be 
incorrect. 

Equations ( 5 )  and (6) can be reduced to a single equation if the radial velocity distributions have 
been assumed to oscillate in sign but not in magnitude from step to step. If we assume this 
behaviour for the radial velocity distributions, the following approximation to equation (2) 
results: 

The system of differential equations is now approximated by this equation and equation (7). Both 
of these equations appear to be valid approximations to the differential equations for fully 
developed pipe flow. However, the assumption about the radial velocity distributions is not valid 
for this flow. For a fixed value of the pressure gradient, equation (8) will have a correct average 
solution. Equation (7) will compute a U-distribution based on upstream values of W. This will 
result in a different axial velocity distribution at the upstream face if the initial W-distribution is 
only approximately fully developed. The pressure gradient will have to be changed and the 
calculations repeated iteratively to conserve mass flux for an internal flow. If the distributions are 
slightly different from those for a fully developed flow, the pressure gradient will have to be 
adjusted to compensate for the resultant error at the upstream face. The cross-stream regions 
where the initial distribution is high will be made into regions where the computed distribution is 
low, and similarly for the initially low regions. This will be repeated in kind at the next step, and 
the pressure gradient and the' velocity distribution will oscillate about an average value. The 
correct solution can be recovered by averaging the pressure gradient and distributions at adjacent 
steps. 

It is much more difficult to evaluate what happens for evolving flows. However, we can observe 
that the interaction of adjusting the pressure gradient and computing the averaged flow will cause 
oscillations to ride on the correct streamwise pressure gradient. In flows where there is a large 
change in pressure gradient from step to step the oscillations will also be large and as a result the 
sign of the pressure gradient may change periodically. This will yield axial velocities that change 
sign near the walls of the duct if the amplitude of the oscillation is large enough. Averaging the 
solutions between adjacent steps is not a suitable solution for a flow that is evolving, since the 
streamwise evolution will be smeared out. 

The previous argument illustrates that the oscillation for fully developed pipe flow is algebraic 
in nature. This would lead us to conclude that the averaging of dU/dx  at two cross-stream 
locations would cause an oscillation in that direction. This would be generally true if the value of 
this derivative was not precisely known at the wall, where U is specified. The value of a U / d x  at the 
location next to the wall is more restricted, and its error is only due to approximation and round- 
off. If this location is sufficiently close to the wall, the approximation error can be made very 
small. Hence we should not expect an algebraic oscillation unless the grid is too coarse. 

Gresho and Lee* suggest that it is inappropriate to develop a priori numerical methods to 
suppress oscillations. They argue that the oscillations in the conventional finite element methods 
are a strong indication about the accuracy of the simulation and should only be eliminated by 
grid refinement in critical regions and careful application of the boundary conditions. Artificial 
damping is seen to mask the underlying physics of the flow being examined. In the methods that 
they discussed, wiggles in the computed flow distributions could be eliminated generally by 
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applying a finer approximation. This is not possible for the Keller box method since the 
oscillation is due to the algebraic averaging and will remain regardless of grid resolution. The 
computed values are smoothed before the thin shear layer equations are balanced. In terms of 
control theory the feedback signal is so strongly damped that the output response can oscillate. 

The differencing scheme that successfully approximated fully developed pipe flow used upwind 
differencing to approximate the streamwise derivatives (see Patankar' for a discussion on central 
and upwind differencing in a general context), with all the equations approximated on a point 
centred at the edge of the box where the unknown values were-the cross in Figure 1. The 
accuracy of the solution will then be first-order in the streamwise direction A<. The raw system of 
difference equations is non-linear and cannot be solved directly. This non-linear system can be 
linearized by substituting a guessed value and a correction value for the unknown, then solving 
for the correction after ignoring the quadratic terms. Keller" has pointed out that solving for the 
corrections has the advantage of reducing cancellation errors. This results in a block tridiagonal 
system of equations which can be easily solved. The initial guess for the unknowns was set equal 
to their value at the upstream location, and the system was repeatedly iterated until the 
corrections were sufficiently small. The value of W at the wall was found to vary the most from 
iteration to iteration. Hence when its correction was less than lop6 of the mean radial derivative 
of the axial velocity the iterations were stopped. 

It is interesting to examine the new difference scheme for fully developed pipe flow to see if it is 
consistent with the true physics of the flow. When f ( x )  = 1, equations (I), (2)  and (4)  yield the 
following non-linear system of equations when this differencing scheme is used: 

wj+ wj-l  - uj-  U j - 1  
2 A? . 

- 

An alternating sign V-distribution cannot satisfy (9) if the flow is fully developed, hence the radial 
velocities have to go to zero. Equation (10) then becomes 

Here the values of W are fixed by the pressure gradient term. This scheme is a much better 
approximation to the thin shear layer equations for fully developed flow. 

The pressure gradient for an internal flow is not known a priori; it is one of the unknowns and it 
must be set to a value that satisfies conservation of mass in the duct. The derivative of the 
difference equations for the corrections to the flow variables U ,  V and W gives a linear block 
tridiagonal system of equations. The solution to this system can be used to solve for the pressure 
gradient.". l Z  First the estimated axial velocity distribution was numerically integrated to find 
the computed flow rate. Then the derivative of the axial velocity with respect to the pressure 
gradient was integrated to find the rate of change of mass flux with respect to the pressure 
gradient. An improved value of the pressure gradient was then computed using a Newton scheme 
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with the old pressure gradient, the actual mass flux, the estimated mass flux and the rate of change 
of mass flux, i.e. 

maclual - meslirnaled 

m 

The initial guess for the pressure gradient was set equal to the pressure gradient at the previous 
step and the equations were iterated until the estimated mass flux was within of the actual 
mass flux. It should be noted that to obtain this kind of accuracy the numerical quadrature 
formula has to be very carefully chosen. For this work, cubic spline integration was selected. 

The overall iteration scheme was as follows. An initial guess of the pressure gradient, the 
velocities and W was made using the values from the previous axial step. For the first step the 
initial guessed pressure gradient was zero. Using the guessed value of the pressure gradient the 
velocity calculations were iterated to the accuracy stated, then the pressure gradient was updated. 
If the computed mass flux was satisfactory the iterations stopped, otherwise the new values of the 
pressure gradient, the velocities and W were treated as an initial guess and the iteration scheme 
was repeated. The total number of iterations is a function of how rapidly the flow is changing in 
the streamwise direction. For the first step in developing pipe flow, roughly 25 iterations of 
velocity and pressure gradient were required, and for the fully developed region, three iterations 
would suffice. These iteration counts could be improved by choosing a better initial guess; most of 
the iterations were done getting the pressure gradient. 

A problem with the calculations arises at the first axial step that is not apparent from the 
previous discussion. The calculations become unstable if the first step is not sufficiently large. This 
is the result of the elliptic character of the flow near the wall at the inlet of a pipe and the 
interaction with the pressure gradient. In this region the d 2 U / d x 2  term in the thin shear layer 
equations is not negligible. This can be minimized by using transformed co-ordinates near the 
inlet or by making the first step larger. It is easier to use a larger first step than to switch between 
transformed co-ordinates, so that was the strategy that was employed. The larger step makes the 
thin shear layer approximation a better approximation over the step. 

3. EXAMPLE FLOWS 

Two example flows were selected to test this computational method: entrance flow in a pipe 
and flow in a 2" conical diffuser. The entrance flow in a pipe has been thoroughly examined 
experimentally and theoretically, thus providing a good benchmark for the method. The 2" 
conical diffuser has not been extensively studied. However, this flow gives a good indication of the 
method's behaviour in adverse pressure gradients. 

Developing pipe flow 

Laminar flow in the entrance of a circular pipe has been extensively studied by a variety of 
methods. Qualitatively, the axisymmetric and two-dimensional entrance flow problems are very 
similar in nature. Hence results for the two-dimensional flow will also be considerea in this 
discussion. The inlet condition used for most experimental studies is that from a gently 
contracting bell mouth which produces a nearly uniform axial velocity distribution at  the 
entrance to the pipe. From this point a boundary layer grows on the inside surface and at some 
point the boundary layers from opposite sides of the pipe merge. The mass flux at any cross- 
section must be constant if no fluid is injected or extracted through the walls. This condition is 
obtained by the pressure gradient being a function of the axial position. Near the inlet the rate of 
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change of the displacement thickness is largest and thus the pressure gradient is also largest there. 
At the wall at the very beginning of the pipe the magnitude of a2U/axz  is not negligible and the 
flow near this point is elliptic. However, this region is very small so an analysis using the 
boundary layer equations should not be severely 'in error. Eventually the velocity distribution 
becomes the well known Poiseuille flow. From this point on the velocities and the pressure 
gradient are constant. 

Analytic solutions have been obtained using a variety of assumptions about the initial 
conditions. The initial flow could have a uniform velocity across the inlet or the initial flow could 
be that from a stream tube. The earliest studies employed boundary layer theory by assuming that 
the core flow is uniform at each cross-section and that the core is accelerated by the boundary 
layer displacement. This type of analysis is thoroughly described in References 13 and 14. The 
solutions obtained from this type of analysis are not valid very near the inlet or where the 
boundary layers start to merge. These studies provided qualitatively correct flow characteristics 
but inadequate detailed features. More precise results for the entry flow problem have been 
obtained by Van Dyke'' and Wilson'6' using asympototic expansions. The result of these 
inquiries agree with numerical solutions of the full Navier-Stokes equations. Van Dyke pointed 
out that the usual assumption of a uniform velocity at the inlet for a channel is not correct. The 
flow near the inlet doest not have an accelerated uniform core owing to displacement. This is the 
result of the flow at the inlet being influenced by the downstream flow inside the pipe. Numerical 
solutions's-20 using the full Navier-Stokes equations have shown that the axial velocity has a 
maximum away from the centreline at cross-sections near the inlet. This shows that comparisons 
between experimental data and computations have to be made with some care since the initial 
conditions could be different. This will not be a factor in the developed region but will influence 
the development lengths. 

The laminar flow entrance flow of air in a pipe was computed using this computational scheme. 
The inside diameter of the pipe was 10 cm. A uniform velocity distribution was assumed to exist 
at the inlet, i.e. U = 0.155 ms- '  and V = 0.0 ms-'. Fifty grid points were geometrically 
distributed along a radius, where the distance between adjacent pairs of grids differed by a factor 
of 1.02. The distance between the grids was smallest next to the wall and increased in length on 
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Figure 2. The static pressure distribution in the pipe. The inlet flow was a uniform velocity distribution and the inlet 
diameter was 10 cm. The fluid was air at room temperature 
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moving towards the centreline. The total length of the computational domain was 20 m, with 
1 cm steps for the first 10 cm and 10 cm steps for the remainder. 

The flow was computed for Reynolds numbers ranging from 100 to 1800 in steps of 100. The 
static pressure, pressure gradient, skin friction and centreline velocity for these calculations are 
given in Figures 2-5 respectively for Reynolds numbers of 300, 600, 900, 1200, 1500 and 1800. 
Detailed velocity distributions for a Reynolds number of 1000, which corresponds to a mean 
velocity of 0.155 m s -  ', are given in Figure 6 for the axial velocities and in Figure 7 for the radial 
velocities. 

The static pressure was nearly linear except in the first 45Aiameters of the pipe for a Reynolds 
number of 1800. The pressure gradient and the skin friction increased rapidly to their final fully 
developed values. The pressure gradient was near the fully developed value at roughly 70 
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Figure 3. The pressure gradient distribution in the pipe. The conditions are the same as in Figure 2 
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Figure 4. The skin friction distribution in the pipe. The conditions are the same as in Figure 2 
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Figure 6. The axial velocity distributions in the inlet region of the pipe. The conditions are the same as in Figure 2; 
R e =  loo0 

diameters and the skin friction at roughly 50 diameters. The centreline velocity increased at much 
slower rate; it came within 99% of the fully developed value at roughly 85 diameters. This 
suggests that when the entrance length is being considered one has to be very careful of what 
measure is going to be used, since widely varying lengths will result. The entrance length increases 
rapidly with Reynolds number regardless of what is being used to indicate that the flow is fully 
developed. No calculations have been made to see if the ratio of entrance lengths based on two 
different indicators is a function of the Reynolds number. 

The axial velocity distributions evolved very rapidly in the initial regions of the flow, where the 
largest changes to the velocity occurred in the central portion of the duct. As expected, the central 
core of the entrance flow is uniform in the entrance of the pipe. However, this is only true within 
roughly 25 diameters of the inlet. Farther downstream, in the central core of the flow, the axial 
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Figure 7. The radial velocity distributions in the inlet region of the pipe. The conditions are the same as in Figure 2; 
Re = 1OOO. Notice that the distributions for 750 and lo00 cm are essentially zero 

velocities accelerate rapidly in the streamwise direction when compared with the fluid near the 
wall, which decelerates slowly. 

The radial velocities were very small throughout the pipe, less than 2.5 mm s-'. Hence the flow 
is very nearly parallel to the axis. Additionally, the magnitude of the radial velocities goes to zero 
very rapidly in the streamwise direction. Throughout the pipe they varied linearly with the radius 
in the central core of the duct. They appear to vary quadratically with the distance from the wall, 
very near the wall. An interesting feature of this computational method can be seen from the 
radial velocity distribution. The system of equations only allows three boundary conditions to be 
set-the centreline values of the radial velocity and W, and the wall axial velocity. Hence there is 
no way to force the wall radial velocity to any prescribed value without allowing one of the other 
variables to vary. All the calculations show that the wall radial velocities asymptotically go to 
zero, the correct value for impermeable walls. 

Since the numerical model used in this set of computations is based on the thin shear layer 
equations, the results cannot reflect the elliptic character of the flow near the wall at the inlet or 
the upstream influence of the flow inside the pipe. Considering this, the scheme still produces 
results that are of sufficient precision for most practical purposes. 

The 2" conical diffuser 

A 2" conical diffuser is formed by the frustrum of a cone with a 2" included angle. The flow is 
characterized by increasing pressure and decreasing velocity in the downstream direction. It is 
generally known that the flow is strongly dependent on the inlet conditions, in effect the 
displacement thickness along the pipe walls that feed the diffuser inlet. 

An analytic solution for the self-similar region of the flow far downstream of the inlet between 
two diverging planes is known, the Jeffery-Hamel In this region of the flow the velocity 
distributions are self-similar. The Navier-Stokes equations then degenerate to a second-order, 
non-linear ordinary differential equation over the surface. The solution to this equation shows 
that, for a fixed angle between the plates, the flow is purely outflow for Reynolds numbers below a 
critical value and is a mixture of inflow and outflow above that value. This critical value is a 
function of the angle between the plates. 
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There is no generally known self-similar solution for the conical diffuser, and since the influence 
of the geometric differences between these flows is not known, one cannot expect the Jeffery- 
Hamel flow results to be applicable. The qualitative character should be similar, i.e. one could 
expect that for a sufficiently low Reynolds number one would have an attached flow and that for 
Reynolds numbers above a critical value one would find separation regions. One of the difficulties 
of examining these types of flow can be explained by considering the Jeffery-Hamel flow. Near 
the critical Reynolds number there is the real possibility that the flow will detach from one wall 
but remain attached to the other, i.e. the flow becomes non-symmetric. Additional problems arise 
in that oscillations in time may also occur near and above the critical Reynolds number. These 
difficulties are discussed by Johnston” with specific regard to turbulent flows. 

All the computations were for a diffuser with an inlet 10 cm in diameter and a total length of 
200 cm, with air at standard temperature and pressure as the fluid. The initial flow was that from 
a 2 m pipe, as computed in the previous section. This caused the initial velocity distribution being 
fed into the diffuser to be fully developed pipe flow. The static pressure, pressure gradient, skin 
friction and centreline velocity are given in Figures 8-1 1 respectively for Reynolds numbers 
ranging from 100 to 1800 in steps of 100, except where noted. Additionally, velocity distributions 
at various steamwise locations are given for a Reynolds number of 1000 in Figure 12 for the axial 
velocities and in Figure‘ 13 for the radial velocities. 

The static pressure and pressure gradient distributions are more interesting for the 2” conical 
diffuser than for the entrance region in the pipe. Looking at the static pressure, Figure 8, one can 
see that the character of the distributions changes with the Reynolds number. At the lower 
Reynolds numbers the static pressure remains negative with respect to the pressure at the inlet. 
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Figure 8. The static pressure distribution in the 2” conical diffuser. The inlet flow was from fully developed pipe flow and 
the inlet diameter was 10 cm 
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Figure 9. The pressure gradient in the 2" conical diffuser. The conditions are the same as in Figure 8 
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Figure 10. The wall skin friction in the 2" conical diffuser. The conditions are the same as in Figure 8 
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0.50 

0.45 

0.30 

: Re = 100 
0.00: , . . . , . . . I  I I . . I I . . . . (  

0 50 100 150 200 

The distance from the inlet (cm). 

Figure 1 1 .  The centreline velocity distribution in the 2" conical diffuser. The conditions are .A same as in Figure 8 
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Figure 12. The axial velocity distributions in the 2" conical diffuser. The conditions are the same as in Figure 8; 
R e =  loo0 

This is evident for Reynolds numbers of 100,200 and 300, where the pressure gradient, Figure 9, is 
negative throughout the diffuser. For Reynolds numbers above 300 the pressure gradient is 
positive throughout the diffuser. At these higher Reynolds numbers the pressure gradient also has 
a maximum value located at roughly five inlet diameters into the diffuser, and this characteristic 
becomes more exaggerated as the Reynolds number increases. Hence the pressure recovery and 
efficiency of this diffuser will depend heavily upon the Reynolds number. 
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Figure 13. The radial velocity distributions in the 2" conical diffuser. The conditions are the same as in Figure 8; 
R e =  lo00 

The wall skin friction, Figure 10, indicates that the flow separates at the end of the diffuser at  a 
Reynolds number of 900. For larger Reynolds numbers the positive skin friction zone creeps 
upstream into the diffuser and the size of this region increases with Reynolds number. Since no 
special care was taken to account for separation, one has to be exceedingly careful about drawing 
any conclusions about the flow in this region. It does appear that the numerical scheme does 
tolerate a limited amount of reverse flow without becoming unstable. The calculations were 
stopped when the Reynolds number was 1800 since they became unstable near the outlet of the 
diffuser. This might be corrected by using the FLAIR approximation. 

The centreline velocity distribution, Figure 1 1, for all Reynolds numbers was nearly linear 
throughout the diffuser. 

The axial velocity distributions at a Reynolds number of lo00 are given at 10 cm steps through 
the diffuser in Figure 12. In the central core of the flow the distributions are very similar for the 
entire diffuser. However, the wall region went from being weakly concave down near the inlet to 
concave up near the outlet. There is a small region for the last few steps where the flow is reversed, 
but the scale of the graph hides this feature. The radial velocity distributions are given at the same 
locations in the diffuser for a Reynolds number of 1000 in Figure 13. In the central core of the flow 
the radial velocity distribution is nearly linear with radius. Near the wall the flow again appears to 
vary quadratically with the distance from the wall. At this Reynolds number the magnitude of the 
radial velocities is very small, less than 1 mm s-'. Thus the flow is nearly parallel in the diffuser as 
well, which validates the use of the thin shear layer equations a posteriori. The maximum value of 
the radial velocity at a given location moves from the wall towards the centreline, proportionate 
to the local radius. Finally, the radial velocities asymptotically approach zero as the wall is 
approached. This boundary condition was not set by the differential equations but is a conse- 
quence of conservation of mass. 

4. CONCLUSIONS 

The numerical scheme described in this paper yields reasonably accurate results for flows inside 
axisymmetric ducts. It corrects a problem with oscillation that arises using the Keller box method 
and it is simpler to use than a full Navier-Stokes finite difference scheme. 
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APPENDIX: THE MODIFIED EQUATIONS 

The grid used for the finite difference scheme is shown in Figure 1. The following equations use 
the standard notation for the velocities, pressure gradient, density and viscosity. When reference 
is made to a known upstream variable it is indicated with a superscript ‘p’. 

The modified equations still generate a block tridiagonal system of equations, of a form given 

A ,  C, 0 0 0 

0 B3 A, C3 0 

for a five-node grid. The submatrices are 3 x 3 matrices for a laminar flow. 
For the kth interval the submatrices can be written as 

4 1  4 2  4 3  

c:1 4 2  4 3  r: 6 U k  

ck= [ c;l C i 1  c;2 ci2 : ; : I ’  ’ . = [  ::]’ ’ .=[  : r k ]  

Thin shear layer equations 

The values of the elements of the various matrices are given by the following formulae: 

=O, -1  
a;3 = -, 

2 

-1  
bk,, =-, 

Aqk 
bk,, = 0, 
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Boundary conditions 

The symmetry condition W = 0 on the axis of symmetry: 

1 1  - 1 2  - - c : ,  = ct2 = c i 3  = r :  = 0, a : 3  = 1. 

a i 2  = 1. 

The radial velocity V = 0 on the axis of symmetry: 

a i l  = a i 3  = c i l  = c i2  = c i3  = r i  = 0, 

The no slip condition U = 0 at the wall: 
a N  - N -  N - b N  N ayl = 1, 3 2  - a 3 3  - b31 - 3 2  = b 3 3  = 0. 

Sensitivity to the pressure gradient 

pressure gradient are identical, with the following single exception: 
The equations that are used to compute the derivatives of U ,  V and W with respect to the 

The derivative of U is then integrated over the cross-section to give m. 
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